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We present a measurement of the top-quark mass with tt̄ events using a data sample corresponding
to an integrated luminosity of 5.7 fb−1 of pp̄ collisions at the Fermilab Tevatron with

√
s = 1.96 TeV

and collected by the CDF II Detector. We select events having no identified charged leptons, large
missing transverse energy, and four, five, or six jets with at least one jet containing a secondary
vertex consistent with the decay of a b quark. This analysis considers events from the semileptonic
tt̄ decay channel, including events that contain tau leptons, which are usually not included in the
top-quark mass measurements. The measurement uses as kinematic variables the invariant mass of
two jets consistent with the mass of the W boson, and the invariant masses of two different three-jet
combinations. We fit the data to signal templates of varying top-quark masses and background
templates, and measure a top-quark mass of Mtop = 172.3 ± 2.4 (stat) ± 1.0 (syst) GeV/c2.
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mass (Mtop) and that of the W boson to the mass of the
predicted Higgs boson within the SM and in new physics
models [1, 2]. Therefore, combined precision measure-
ments of the W mass and Mtop provide an important
constraint on the Higgs boson mass. At the Tevatron,
the top quark is predominantly produced in tt̄ pairs. As
in the SM the top quark decays almost exclusively to a
W boson and a b quark, the expected signature of a tt̄
production event is tt̄ → W+bW−b̄, assuming unitarity
of the three-generation CKM matrix [3]. Since the W
boson subsequently decays either to a quark-antiquark
pair or to a lepton-neutrino pair, the final state of tt̄
production can be classified by the number of charged
leptons produced. In this letter, we focus on events
with large missing transverse energy ( 6ET ) [4] as expected
for undetected energetic neutrinos, accompanied by jets.
We explicitly veto events with identified high pT elec-
trons or muons (lepton+jets events) as well as multijet
events where both W bosons decay hadronically (all-
hadronic events). This ensures that our result is sta-
tistically independent from other CDF top-quark mass
measurements [5–8] and allows for a future combination
with them. A previous measurement of Mtop in this final

state used an integrated luminosity of 311 pb−1 [9] and
yielded Mtop = 172.3± 15.3 (stat)± 14.4 (syst) GeV/c2.
Although no identified leptons are explicitly required, our
measurement is sensitive to all W leptonic decays. This
includes decays to τ leptons, which constitute approxi-
mately 40% of the signal sample in our final selection.
The frequency of observed τ lepton final states is pre-
dicted to be enhanced by new physics models such as a
charged Higgs decay [10], therefore, a significantly differ-
ent measurement of Mtop in this decay channel could in-
dicate contributions from non-SM [11] physics processes.

We use data corresponding to an integrated luminosity
of 5.7 fb−1 of pp̄ collisions at the Fermilab Tevatron, and
collected by the CDF II Detector [12]. The sample of
events used in this measurement is a subset of events
that initially passed a trigger requirement, which ac-
cepted events with at least four calorimetric clusters [13]
of ET > 15 GeV and a scalar sum ET of these clusters
greater than 175 GeV [14]. After the trigger selection,
event observables of physical interest are computed. Jets
are reconstructed with the jetclu [15] algorithm using

a cone radius of ∆R =
√

∆η2 + ∆φ2 = 0.4 [16]. Jets
are corrected [17] for nonuniformities of the calorimeter
response as a function of η, energy contributed by multi-
ple pp̄ interactions in the event, and calorimeter nonlin-
ear response. To determine if a jet originated from a b
quark, a secondary vertex algorithm [18] is applied. This
algorithm identifies jets that are likely to come from b
quark hadronization through the presence of a displaced
vertex within the jets (b-tag). We require at least one
jet to be identified as a b jet (b-tagged). We divide the
sample of candidate events into two, separating events
with one b-tagged jet (1-tag) from events with two or
more b-tagged jets (2-tag). Events are required to have
at least four and at most six jets with transverse en-

ergy ET > 15 GeV and |η| < 2.0. To avoid overlap
with other CDF top-quark mass measurements, we re-
ject events with reconstructed electrons or muons with
pT > 20 GeV/c and |η| < 1.0 (lepton + jets final state),

and events with 6ET significance below 3 GeV1/2 (all-
hadronic final state), where the 6ET significance is de-

fined as 6ET
sig

= 6ET /
√

∑

jets ET . For further rejec-

tion of multijet backgrounds from QCD processes, we
require ∆φmin( 6ET , jet) > 0.4, where ∆φmin( 6ET , jet) is
the smallest separation in the angle φ between jets and
6ET [14].

Background events with b-tags arise from QCD multi-
jet and electroweak production of W bosons associated
with heavy flavor jets. In order to improve the signal-
to-background ratio (S/B) in this analysis, an artificial
neural network is trained to identify the kinematic and
topological charateristics of SM tt̄ events using eight in-
put variables [14]. We apply the neural network to all
events passing the above selections, and make a cut on
neural network score that retains 81% of the tt̄ signal
events while rejecting 91% of background events. The
selection criteria listed above define the ‘signal region’.
We follow [14] and estimate the background rate using
a data-driven method. The method uses events with ex-
actly three jets and employs a per-jet parameterization of
the b-tagging probability. Due to the presence of tt̄ events
in samples with higher jet multiplicity, we extrapolate
the b-tagging probability of the three-jet event sample
to higher jet multiplicity events by iteratively removing
the tt̄ content from the sample [14]. We estimate the
background for the 1-tag and 2-tag samples separately.
A b-tagging correction factor [19] is applied to take into
account the fact that most of the heavy flavor jets are
produced in pairs. With this procedure we obtain the es-
timated number of background events in the signal region
shown in Table I. We also show the estimated number of
tt̄ signal events, assuming a tt̄ production cross-section
of 7.5 pb at Mtop = 172.5 GeV/c2 [20], together with the
number of observed events in the data.

Monte Carlo (MC)-simulated tt̄ samples are generated
by pythia [21] with 76 different Mtop values ranging from
150 GeV/c2 to 240 GeV/c2. For each of them we re-
construct the events with different values of ∆JES , the
difference between the jet energy scale (JES) in the MC
simulation and the data. A total of 27 different ∆JES

values, ranging from -3.0 σc to +3.0 σc, where σc is the
uncertainty on the JES [22], are used to reduce the sys-
tematic effects due to the jet energy uncertainty, as de-
scribed later.

For each MC-simulated sample in this analysis, we re-
construct three variables using the leading four or five jets
to form the templates. The first variable, mjj , defined as
the invariant mass of the two jets from the hadronically
decaying W boson, serves as an in situ constraint of the
JES through the likelihood fit described later. We calcu-
late mjj from the two non-b-tagged jets whose invariant
mass produces the closest value to the world average W
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TABLE I: Number of expected signal and background events
and observed data events with integrated luminosity of 5.7
fb−1 in the signal region. The tt̄ signal contribution is esti-
mated with a cross-section of 7.5 pb. All selection require-
ments are applied, and events are separated into 1-tag and
2-tag categories.

Events 1-tag 2-tag
Expected tt̄ Signal 644.3 ± 118.7 262.9 ± 50.3

Expected Background 410.6 ± 31.7 43.8 ± 11.0
Total Expectation 1054.9 ± 122.9 306.7 ± 51.5

Observed Data 1147 285

boson mass of 80.40 GeV/c2 [23]. We also extract the re-

constructed top-quark mass (mhad,reco
t ) from the invari-

ant mass of the three jets whose momentum sum yields
the largest pT since the invariant mass constructed this
way has a large correlation with the hadronically decay-
ing top-quark mass. To enhance the probability that the

jets used to compute mhad,reco
t come from the hadroni-

cally decaying top quark, we add two constraints to the

calculation of mhad,reco
t : first, mhad,reco

t must contain the
two jets that contribute to mjj , and second, in 2-tag

events one jet of mhad,reco
t must be b-tagged. A third

variable, m
had,reco(2)
t , is defined as the invariant mass of

three jets, two of which are the pair which defines mjj .

The third jet of m
had,reco(2)
t is required to be the most en-

ergetic jet of those not forming mhad,reco
t , and is required

to be b-tagged in a 2-tag event. The variable m
had,reco(2)
t

provides complementary information on the top quark
mass, and is particularly important in events where the

three jets used to compute mhad,reco
t were not the actual

decay products of the hadronically-decaying top quark.
The template method used in the extraction of Mtop re-

quires that a probability density function (p.d.f.) be built
for each template. For each MC signal and background
sample, we estimate the p.d.f.s using the kernel density
estimation (KDE)[24, 25] that employs a non-parametric
method to construct p.d.f.s. For each sample, we build a
three dimensional p.d.f. from the reconstructed observ-

ables (mjj , mhad,reco
t , and m

had,reco(2)
t ), taking their cor-

relations into account. To measure Mtop, we fit the signal
and background p.d.f.s to the distributions of the observ-
ables in the data using an unbinned maximum likelihood
fit [26] where we minimize the negative logarithm of the
likelihood using minuit [27]. The likelihood fits Mtop

and ∆JES simultaneously, and is built separately for each
subsample, 1-tag and 2-tag events, in order to improve
the usage of statistical information. References [25, 28]
provide detailed information about this technique.

The mass fitting procedure is tested with pseudoexper-
iments for a set of MC tt̄ samples with 14 different Mtop

values ranging from 159 GeV/c2 to 185 GeV/c2. For each
pseudoexperiment we select the number of background
events from a Poisson distribution with a mean equal

to the expected total number of background events in
the sample and the number of signal events from a Pois-
son distribution with a mean equal to the expected num-
ber of signal events normalized to a tt̄ production cross
section of 7.5 pb [20]. The distributions of the average
mass residual (the deviation from the input top-quark
mass) and the width of the pull (the ratio of the residual
to the uncertainty) for simulated experiments are cor-
rected to be zero and unity, respectively. The correction
is M corr

t = 1.24 × Mmeas
t − 40.6 GeV/c2, where Mmeas

t

is the raw value from the likelihood fit and M corr
t is the

corrected value of the measurement. The measured un-
certainty is correspondingly increased by 20% to correct
the width of the pull distribution.

We examine various sources of systematic uncertain-
ties that could affect the measurement by comparing
the results of pseudoexperiments in which we vary rel-
evant parameters within their uncertainties. One of the
dominant sources of systematic uncertainty is the resid-
ual JES [6, 22]. We vary the JES components within
their uncertainties in the generated signal MC events and
interpret the shifts in the returned top-quark mass as
uncertainties. The b jet energy scale systematic uncer-
tainty that arises from the modeling of b fragmentation,
b hadron branching fractions, and calorimeter response
captures the additional uncertainty not taken into ac-
count in the light quark jet energy scale [6]. The uncer-
tainty arising from the choice of MC generator is esti-
mated by comparing results from MC simulated samples
generated with pythia and herwig [29]. We estimate
the systematic uncertainty due to imperfect modeling of
initial-state gluon radiation (ISR) and final-state gluon
radiation (FSR) by varying the amounts of ISR and FSR
in simulated events [30]. We estimate the systematic un-
certainty due to parton distribution functions (PDF’s) of
the proton by varying the independent eigenvectors of the
CTEQ6M [31] PDF’s, varying ΛQCD (228 MeV vs. 300
MeV), and comparing CTEQ5M [32] with MRST72 [33]
PDF’s. To estimate the systematic uncertainty asso-
ciated with uncertainties in the top-quark production
mechanism, we vary the fraction of the top quarks pro-
duced by gluon-gluon annihilation from the default 6%
to 20%, corresponding to a one standard deviation upper
bound on the gluon fusion fraction [34]. We also evalu-
ate the uncertainty due to background modeling effects
by re-weighting the background shape up and down and
comparing the resulting measurements. We apply an ad-
ditional uncertainty to account for the effect of the trig-
ger simulation in the signal MC samples, in a similar way
to the background shape systematic uncertainty estima-
tion. We also estimate an uncertainty due to the effect
of multiple hadron interactions, which takes into account
the increasing instantaneous luminosity in this dataset.
The color reconnection (CR) systematic uncertainty [35]
is evaluated using MC samples generated with and with-
out CR effects adopting different tunes [36] of pythia.
Table II summarizes the individual systematic uncertain-
ties considered, giving a total systematic uncertainty of
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TABLE II: Systematic uncertainties on Mtop.

Systematic Sources Uncertainty (GeV/c2)
Residual JES 0.5

b-JES 0.3
MC Generator 0.7

Radiation 0.2
PDFs 0.2

gg fraction < 0.1
Background 0.1

Trigger Modeling 0.1
Multiple Hadron Interaction 0.2

Color Reconnection 0.2
Total Systematic Uncertainty 1.0

1.0 GeV/c2 for the measurement of Mtop.
By applying a likelihood fit to the data using the three

observables described above and the corrections obtained
from the simulated experiments, the top-quark mass is
measured to be

Mtop = 172.3± 2.4(stat) ± 1.0(syst) GeV/c2

= 172.3± 2.6 GeV/c2. (1)

Figure 1 shows the distribution of the observables used
for the Mtop measurement overlaid with their probability
density functions from tt̄ signal events with Mtop = 172.5
GeV/c2 and the estimated background.

In conclusion, we have performed a measurement of the
top-quark mass in events with large 6ET and jets, corre-
sponding to an integrated luminosity of 5.7 fb−1. The
data sample has been chosen in such a way as to exclude
events used in other CDF top-quark mass measurements.
The result, Mtop = 172.3±2.6 GeV/c2, is approximately
a factor of 6 improvement from the previous measure-
ment in this channel [9], and is in agreement with other
measurements which contribute to the world average of
Mtop = 173.2± 0.9 GeV/c2 [37].
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